CGS 2545: Database Concepts Summer 2007

EXAM #2 Review

Instructor: Mark Llewellyn

markl@cs.ucf.edu HEC 236, 823-2790

http://www.cs.ucf.edu/courses/cgs2545/sum2007

School of Electrical Engineering and Computer Science University of Central Florida

Material Covered On Exam

- The material covered on the exam is taken only from the on-line lecture notes. There will be no questions on the exam which are Access specific.
- Much of this material also appears in the textbook, however, material that appears **only** in the textbook will not appear on the exam.
- The exam covers the material in Chapters 5 (two sections of notes), and 7.
- Format of the exam will consist of mostly multiple choice and true/false questions with a few work type problems. The work problems will consist of writing SQL queries.

Chapter 5 Details

Logical Database Design And The Relational Data Model

- Relation, attribute, domain, tuple, degree, cardinality, and related terminology.
- You can ignore the more mathematical definition of a relation.
- Be familiar with the definition of a relation as shown on page 11.
- Know the difference between a schema and an instance.
- Be able to convert basic ER diagrams into a set of relational tables.
 - Strong entities with simple, composite, and multi-valued dependencies.
 - Weak entities.
 - Binary 1:M and M:M relationships.
 - Binary 1:1 relationships.
 - Associative entities both with and without defined identifiers.
 - Unary relationships Don't worry about this one for the exam.
 - Supertype/subtype hierarchies.

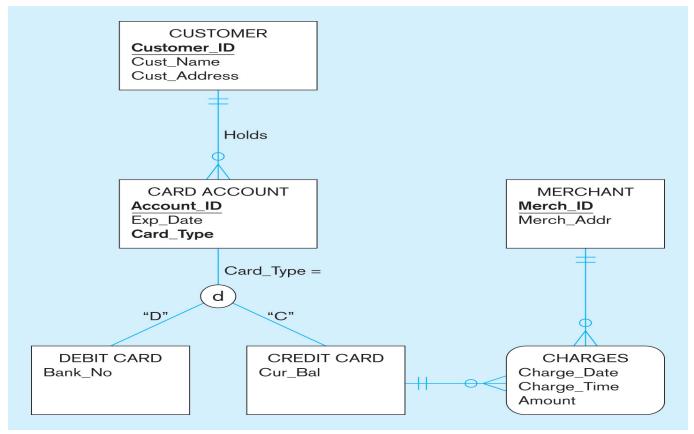
Chapter 5 – Part 2 Details

Normalization

- Know what normalization is and how it is achieved.
- Concept of a functional dependency.
- Normal forms based upon functional dependencies: (1NF), 2NF, 3NF, and BCNF.
- Insertion, deletion, and update anomalies.
- Be able to convert N2NF tables into 2NF tables.
- Be able to convert N3NF tables into 3NF tables.

Chapter 7 Details

Introduction To SQL


- Table creation in SQL.
- Referential integrity constraints in tables in SQL.
- Inserting, deleting, and updating rows in tables in SQL.
- Queries in SQL.
 - Basic SELECT statement.

```
SELECT (attributes)
FROM (tables)
WHERE condition
GROUP BY
HAVING
ORDER BY
```

Also see "SQL – In class exercises" for more SQL query examples.

1. Convert the following ERD into a set of relations (tables) using the guidelines outlined in the notes for Chapter 5.

- 2. The relation scheme CLASS(<u>course_number</u>, <u>section_number</u>, <u>room_number</u>, <u>capacity</u>) is in which normal form given the functional dependency room_number → capacity. If the relation scheme is not in 3NF, decompose it into a set of relation schemas that are in 3NF.
 - a) 1NF
 - b) 2NF
 - c) 3NF

3. Using the relation schemas shown below create table definitions in SQL for each of the tables listed.

STUDENT	(STUDENT	_ID, STU	JDENT_NAME)
---------	----------	----------	-------------

STUDENT_ID	STUDENT_NAME
38214	Letersky
54907	Altvater
66324	Aiken
70542	Marra

QUALIFIED (FACULTY_ID, COURSE_ID, DATE_QUALIFIED)

FACULTY_ID	COURSE_ID	DATE_QUALIFIED
2143	ISM 3112	9/1988
2143	ISM 3113	9/1988
3467	ISM 4212	9/1995
3467	ISM 4930	9/1996
4756	ISM 3113	9/1991
4756	ISM 3112	9/1991

FACULTY (FACULTY_ID, FACULTY_NAME)

FACULTY_ID	FACULTY_NAME
2143	Birkin
3467	Berndt
4756	Collins

SECTION (SECTION_NO, SEMESTER, COURSE_ID)

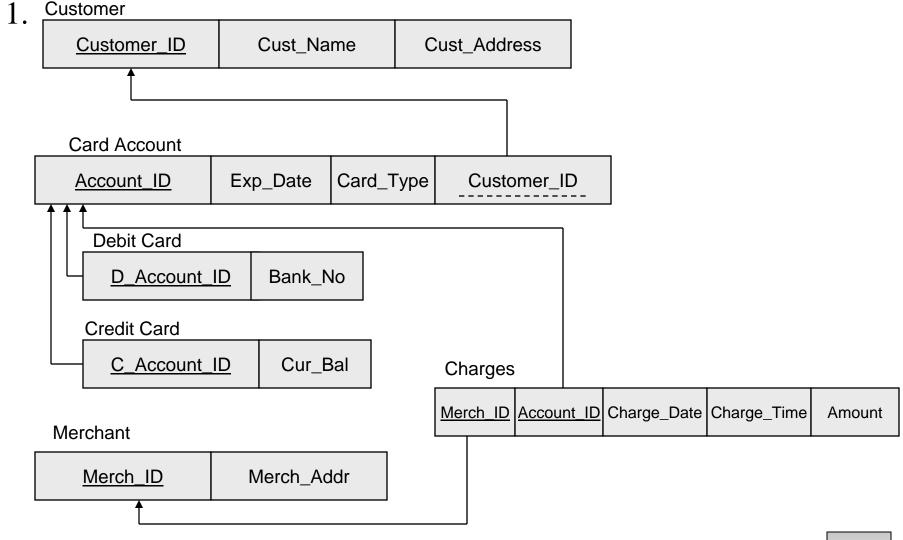
SECTION_NO	SEMESTER	COURSE_ID
2712	I-2006	ISM 3113
2713	I-2006	ISM 3113
2714	I-2006	ISM 4212
2715	I-2006	ISM 4930

COURSE (COURSE_ID, COURSE_NAME)

COURSE_ID	COURSE_NAME
ISM 3113	Syst Analysis
ISM 3112	Syst Design
ISM 4212	Database
ISM 4930	Networking

REGISTRATION (STUDENT_ID, SECTION_NO, SEMESTER)

STUDENT_ID	SECTION_NO	SEMESTER
38214	2714	I-2006
54907	2714	I-2006
54907	2715	I-2006
66324	2713	I-2006



- 4. Using the relation schemas shown in Problem 3 construct an SQL expression to answer the following queries:
 - a) "Which students have an ID number that is less than 50000?"
 - b) "What is the name of the faculty member whose ID is 4756?"
 - c) "What is the smallest section number used in the first semester of 2001"?

- 4. Using the relation schemas shown in Problem 3 construct an SQL expression to answer the following queries:
 - a) "Which students have an ID number that is less than 50000?"
 - b) "What is the name of the faculty member whose ID is 4756?"
 - c) "What is the smallest section number used in the first semester of 2001"?

- 2. The relation scheme CLASS(<u>course_number</u>, <u>section_number</u>, <u>room_number</u>, <u>capacity</u>) is in which normal form given the functional dependency room_number → capacity. If the relation scheme is not in 3NF, decompose it into a set of relation schemas that are in 3NF.
 - a) 1NF
 - b) 2NF since capacity is not dependent on the full set of primary key attributes.

Decompose into CLASS(<u>course_number</u>, section_number, room)

ROOM(room, capacity)

c) 3NF

3. CREATE TABLE STUDENT

(STUDENT ID NUMBER NOT NULL,

STUDENT_NAME VARCHAR2(25),

CONSTRAINT STUDENT_PK PRIMARY KEY (STUDENT_ID));

CREATE TABLE FACULTY

(FACULTY_ID NUMBER NOT NULL,

FACULTY_NAME VARCHAR2(25),

CONSTRAINT FACULTY_PK PRIMARY KEY (FACULTY_ID));

CREATE TABLE COURSE

(COURSE_ID CHAR(8) NOT NULL,

COURSE_NAME VARCHAR2(15),

CONSTRAINT COURSE_PK PRIMARY KEY (COURSE_ID));

CREATE TABLE SECTION

(SECTION_NO NUMBER NOT NULL, SEMESTER CHAR(7) NOT NULL,

COURSE_ID CHAR(8),

CONSTRAINT SECTION_PK PRIMARY KEY(COURSE_ID,SECTION_NO,

SEMESTER),

CONSTRAINT SECTION_FK FOREIGN KEY (COURSE_ID)

REFERENCES COURSE (COURSE_ID));

CREATE TABLE IS QUALIFIED

(FACULTY_ID NUMBER NOT NULL, COURSE_ID CHAR(8) NOT NULL,

DATE_QUALIFIED DATE,

CONSTRAINT IS_QUALIFIED_PK PRIMARY KEY (FACULTY_ID, COURSE_ID),

CONSTRAINT QUALIFIED_FACULTY_FK FOREIGN KEY (FACULTY_ID)

REFERENCES FACULTY (FACULTY_ID),

CONSTRAINT QUALIFIED_COURSE_FK FOREIGN KEY (COURSE_ID)

REFERENCES COURSE (COURSE_ID));

CREATE TABLE IS_REGISTERED

(STUDENT_ID NUMBER NOT NULL, SECTION_NO NUMBER NOT NULL, SEMESTER CHAR(7) NOT NULL,

CONSTRAINT IS_REGISTERED_PK PRIMARY KEY (STUDENT_ID,

SECTION_NO, SEMESTER),

CONSTRAINT STUDENT_IS_REGISTERED_FK FOREIGN KEY(STUDENT_ID)
REFERENCES STUDENT(STUDENT_ID),

CONSTRAINT COURSE_IS_REGISTERED_FK FOREIGN KEY (SECTION_NO, SEMESTER)

REFERENCES SECTION(SECTION_ID, SEMESTER));

- 4. Using the relation schemas shown in Problem 3 construct an SQL expression to answer the following queries:
 - a) "Which students have an ID number that is less than 50000?"

```
SELECT STUDENT_ID, STUDENT_NAME FROM STUDENT WHERE STUDENT_ID < 50000;
```

b) "What is the name of the faculty member whose ID is 4756?"

```
SELECT FACULTY_NAME
FROM FACULTY
WHERE FACULTY_ID = 4756;
```

c) "What is the smallest section number used in the first semester of 2001"?

SELECT MIN(SECTION_ID) FROM IS_REGISTERED WHERE SEMESTER = 'I-2001';

